MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. CC766S Brass

Grade 29 titanium belongs to the titanium alloys classification, while CC766S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is CC766S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 6.8 to 11
28
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 930 to 940
500
Tensile Strength: Yield (Proof), MPa 850 to 870
190

Thermal Properties

Latent Heat of Fusion, J/g 410
180
Maximum Temperature: Mechanical, °C 340
130
Melting Completion (Liquidus), °C 1610
840
Melting Onset (Solidus), °C 1560
800
Specific Heat Capacity, J/kg-K 560
390
Thermal Conductivity, W/m-K 7.3
89
Thermal Expansion, µm/m-K 9.3
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
36

Otherwise Unclassified Properties

Base Metal Price, % relative 36
24
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 39
2.8
Embodied Energy, MJ/kg 640
48
Embodied Water, L/kg 410
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
180
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 58 to 59
17
Strength to Weight: Bending, points 47 to 48
18
Thermal Diffusivity, mm2/s 2.9
28
Thermal Shock Resistance, points 68 to 69
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.5
0.3 to 1.8
Antimony (Sb), % 0
0 to 0.1
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
58 to 64
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.5
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 2.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.6
Tin (Sn), % 0
0 to 0.5
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
29.5 to 41.7
Residuals, % 0 to 0.4
0