MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. C95820 Bronze

Grade 29 titanium belongs to the titanium alloys classification, while C95820 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is C95820 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 6.8 to 11
15
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 930 to 940
730
Tensile Strength: Yield (Proof), MPa 850 to 870
310

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 340
230
Melting Completion (Liquidus), °C 1610
1080
Melting Onset (Solidus), °C 1560
1020
Specific Heat Capacity, J/kg-K 560
440
Thermal Conductivity, W/m-K 7.3
38
Thermal Expansion, µm/m-K 9.3
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 36
29
Density, g/cm3 4.5
8.3
Embodied Carbon, kg CO2/kg material 39
3.5
Embodied Energy, MJ/kg 640
56
Embodied Water, L/kg 410
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
86
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
400
Stiffness to Weight: Axial, points 13
8.0
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 58 to 59
24
Strength to Weight: Bending, points 47 to 48
22
Thermal Diffusivity, mm2/s 2.9
11
Thermal Shock Resistance, points 68 to 69
25

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
9.0 to 10
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
77.5 to 82.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
4.0 to 5.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
4.5 to 5.8
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0
0 to 0.020
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.8