MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. S15500 Stainless Steel

Grade 29 titanium belongs to the titanium alloys classification, while S15500 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.8 to 11
6.8 to 16
Fatigue Strength, MPa 460 to 510
350 to 650
Poisson's Ratio 0.32
0.28
Reduction in Area, % 17
17 to 40
Shear Modulus, GPa 40
75
Shear Strength, MPa 550 to 560
540 to 870
Tensile Strength: Ultimate (UTS), MPa 930 to 940
890 to 1490
Tensile Strength: Yield (Proof), MPa 850 to 870
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 340
820
Melting Completion (Liquidus), °C 1610
1430
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.3
17
Thermal Expansion, µm/m-K 9.3
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
13
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 39
2.7
Embodied Energy, MJ/kg 640
39
Embodied Water, L/kg 410
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
890 to 4460
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 58 to 59
32 to 53
Strength to Weight: Bending, points 47 to 48
26 to 37
Thermal Diffusivity, mm2/s 2.9
4.6
Thermal Shock Resistance, points 68 to 69
30 to 50

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.070
Chromium (Cr), % 0
14 to 15.5
Copper (Cu), % 0
2.5 to 4.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
71.9 to 79.9
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0