MakeItFrom.com
Menu (ESC)

Grade 29 Titanium vs. S20431 Stainless Steel

Grade 29 titanium belongs to the titanium alloys classification, while S20431 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 29 titanium and the bottom bar is S20431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.8 to 11
46
Fatigue Strength, MPa 460 to 510
320
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 550 to 560
500
Tensile Strength: Ultimate (UTS), MPa 930 to 940
710
Tensile Strength: Yield (Proof), MPa 850 to 870
350

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 340
890
Melting Completion (Liquidus), °C 1610
1400
Melting Onset (Solidus), °C 1560
1360
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.3
15
Thermal Expansion, µm/m-K 9.3
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
12
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 39
2.5
Embodied Energy, MJ/kg 640
36
Embodied Water, L/kg 410
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62 to 100
270
Resilience: Unit (Modulus of Resilience), kJ/m3 3420 to 3540
310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 58 to 59
25
Strength to Weight: Bending, points 47 to 48
23
Thermal Diffusivity, mm2/s 2.9
4.0
Thermal Shock Resistance, points 68 to 69
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.12
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 0
1.5 to 3.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
66.1 to 74.4
Manganese (Mn), % 0
5.0 to 7.0
Nickel (Ni), % 0
2.0 to 4.0
Nitrogen (N), % 0 to 0.030
0.1 to 0.25
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.045
Ruthenium (Ru), % 0.080 to 0.14
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0