MakeItFrom.com
Menu (ESC)

Grade 3 Titanium vs. 771.0 Aluminum

Grade 3 titanium belongs to the titanium alloys classification, while 771.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 3 titanium and the bottom bar is 771.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
85 to 120
Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 21
1.7 to 6.5
Fatigue Strength, MPa 300
92 to 180
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 39
26
Tensile Strength: Ultimate (UTS), MPa 510
250 to 370
Tensile Strength: Yield (Proof), MPa 440
210 to 350

Thermal Properties

Latent Heat of Fusion, J/g 420
380
Maximum Temperature: Mechanical, °C 320
180
Melting Completion (Liquidus), °C 1660
630
Melting Onset (Solidus), °C 1610
620
Specific Heat Capacity, J/kg-K 540
870
Thermal Conductivity, W/m-K 21
140 to 150
Thermal Expansion, µm/m-K 9.2
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
27
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
82

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 4.5
3.0
Embodied Carbon, kg CO2/kg material 31
8.0
Embodied Energy, MJ/kg 510
150
Embodied Water, L/kg 110
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
4.4 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 910
310 to 900
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
46
Strength to Weight: Axial, points 32
23 to 35
Strength to Weight: Bending, points 32
29 to 39
Thermal Diffusivity, mm2/s 8.6
54 to 58
Thermal Shock Resistance, points 37
11 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
90.5 to 92.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0.060 to 0.2
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.15
Magnesium (Mg), % 0
0.8 to 1.0
Manganese (Mn), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Silicon (Si), % 0
0 to 0.15
Titanium (Ti), % 98.8 to 100
0.1 to 0.2
Zinc (Zn), % 0
6.5 to 7.5
Residuals, % 0 to 0.4
0 to 0.15