MakeItFrom.com
Menu (ESC)

Grade 3 Titanium vs. AISI 316 Stainless Steel

Grade 3 titanium belongs to the titanium alloys classification, while AISI 316 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 3 titanium and the bottom bar is AISI 316 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
160 to 360
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
8.0 to 55
Fatigue Strength, MPa 300
210 to 430
Poisson's Ratio 0.32
0.28
Reduction in Area, % 34
80
Shear Modulus, GPa 39
78
Shear Strength, MPa 320
350 to 690
Tensile Strength: Ultimate (UTS), MPa 510
520 to 1180
Tensile Strength: Yield (Proof), MPa 440
230 to 850

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
590
Melting Completion (Liquidus), °C 1660
1400
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 9.2
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
19
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
3.9
Embodied Energy, MJ/kg 510
53
Embodied Water, L/kg 110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
85 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 910
130 to 1820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 32
18 to 41
Strength to Weight: Bending, points 32
18 to 31
Thermal Diffusivity, mm2/s 8.6
4.1
Thermal Shock Resistance, points 37
11 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
62 to 72
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0 to 0.050
0 to 0.1
Oxygen (O), % 0 to 0.35
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.8 to 100
0
Residuals, % 0 to 0.4
0