MakeItFrom.com
Menu (ESC)

Grade 32 Titanium vs. C10700 Copper

Grade 32 titanium belongs to the titanium alloys classification, while C10700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 32 titanium and the bottom bar is C10700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11
2.2 to 50
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Shear Strength, MPa 460
160 to 240
Tensile Strength: Ultimate (UTS), MPa 770
230 to 410
Tensile Strength: Yield (Proof), MPa 670
77 to 410

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 310
200
Melting Completion (Liquidus), °C 1610
1080
Melting Onset (Solidus), °C 1560
1080
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 7.5
390
Thermal Expansion, µm/m-K 8.2
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
100
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
100

Otherwise Unclassified Properties

Base Metal Price, % relative 38
35
Density, g/cm3 4.5
9.0
Embodied Carbon, kg CO2/kg material 32
2.7
Embodied Energy, MJ/kg 530
42
Embodied Water, L/kg 180
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
7.9 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 2100
25 to 710
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 47
7.2 to 13
Strength to Weight: Bending, points 41
9.4 to 14
Thermal Diffusivity, mm2/s 3.0
110
Thermal Shock Resistance, points 63
8.2 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.5 to 5.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
99.83 to 99.915
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0
Molybdenum (Mo), % 0.6 to 1.2
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.11
0 to 0.0010
Silicon (Si), % 0.060 to 0.14
0
Silver (Ag), % 0
0.085 to 0.12
Tin (Sn), % 0.6 to 1.4
0
Titanium (Ti), % 88.1 to 93
0
Vanadium (V), % 0.6 to 1.4
0
Zirconium (Zr), % 0.6 to 1.4
0
Residuals, % 0 to 0.4
0 to 0.050