MakeItFrom.com
Menu (ESC)

Grade 32 Titanium vs. S17700 Stainless Steel

Grade 32 titanium belongs to the titanium alloys classification, while S17700 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 32 titanium and the bottom bar is S17700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
1.0 to 23
Fatigue Strength, MPa 390
290 to 560
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 460
740 to 940
Tensile Strength: Ultimate (UTS), MPa 770
1180 to 1650
Tensile Strength: Yield (Proof), MPa 670
430 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 310
890
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.5
15
Thermal Expansion, µm/m-K 8.2
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 38
13
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 32
2.8
Embodied Energy, MJ/kg 530
40
Embodied Water, L/kg 180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
15 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 2100
460 to 3750
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 47
42 to 59
Strength to Weight: Bending, points 41
32 to 40
Thermal Diffusivity, mm2/s 3.0
4.1
Thermal Shock Resistance, points 63
39 to 54

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.5 to 5.5
0.75 to 1.5
Carbon (C), % 0 to 0.080
0 to 0.090
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
70.5 to 76.8
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0.6 to 1.2
0
Nickel (Ni), % 0
6.5 to 7.8
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.11
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.060 to 0.14
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.6 to 1.4
0
Titanium (Ti), % 88.1 to 93
0
Vanadium (V), % 0.6 to 1.4
0
Zirconium (Zr), % 0.6 to 1.4
0
Residuals, % 0 to 0.4
0