MakeItFrom.com
Menu (ESC)

Grade 33 Titanium vs. S31260 Stainless Steel

Grade 33 titanium belongs to the titanium alloys classification, while S31260 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 33 titanium and the bottom bar is S31260 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 23
23
Fatigue Strength, MPa 250
370
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 41
80
Shear Strength, MPa 240
500
Tensile Strength: Ultimate (UTS), MPa 390
790
Tensile Strength: Yield (Proof), MPa 350
540

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 8.7
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 55
20
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 33
3.9
Embodied Energy, MJ/kg 530
53
Embodied Water, L/kg 200
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
160
Resilience: Unit (Modulus of Resilience), kJ/m3 590
720
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
28
Strength to Weight: Bending, points 26
24
Thermal Diffusivity, mm2/s 8.7
4.3
Thermal Shock Resistance, points 30
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0.1 to 0.2
24 to 26
Copper (Cu), % 0
0.2 to 0.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
59.6 to 67.6
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0.35 to 0.55
5.5 to 7.5
Nitrogen (N), % 0 to 0.030
0.1 to 0.3
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.030
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.1 to 99.52
0
Tungsten (W), % 0
0.1 to 0.5
Residuals, % 0 to 0.4
0