MakeItFrom.com
Menu (ESC)

Grade 34 Titanium vs. 319.0 Aluminum

Grade 34 titanium belongs to the titanium alloys classification, while 319.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 34 titanium and the bottom bar is 319.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
72
Elongation at Break, % 20
1.8 to 2.0
Fatigue Strength, MPa 310
76 to 80
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
27
Shear Strength, MPa 320
170 to 210
Tensile Strength: Ultimate (UTS), MPa 510
190 to 240
Tensile Strength: Yield (Proof), MPa 450
110 to 180

Thermal Properties

Latent Heat of Fusion, J/g 420
480
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
600
Melting Onset (Solidus), °C 1610
540
Specific Heat Capacity, J/kg-K 540
880
Thermal Conductivity, W/m-K 21
110
Thermal Expansion, µm/m-K 8.7
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
27
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
84

Otherwise Unclassified Properties

Base Metal Price, % relative 55
10
Density, g/cm3 4.5
2.9
Embodied Carbon, kg CO2/kg material 33
7.7
Embodied Energy, MJ/kg 530
140
Embodied Water, L/kg 200
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
3.3 to 3.9
Resilience: Unit (Modulus of Resilience), kJ/m3 960
88 to 220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
48
Strength to Weight: Axial, points 31
18 to 24
Strength to Weight: Bending, points 31
25 to 30
Thermal Diffusivity, mm2/s 8.4
44
Thermal Shock Resistance, points 39
8.6 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
85.8 to 91.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0.1 to 0.2
0
Copper (Cu), % 0
3.0 to 4.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0.35 to 0.55
0 to 0.35
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.010 to 0.020
0
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
5.5 to 6.5
Titanium (Ti), % 98 to 99.52
0 to 0.25
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0 to 0.4
0 to 0.5