MakeItFrom.com
Menu (ESC)

Grade 34 Titanium vs. ACI-ASTM CA40 Steel

Grade 34 titanium belongs to the titanium alloys classification, while ACI-ASTM CA40 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 34 titanium and the bottom bar is ACI-ASTM CA40 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
10
Fatigue Strength, MPa 310
460
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 510
910
Tensile Strength: Yield (Proof), MPa 450
860

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
750
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1500
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 8.7
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 55
7.5
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 33
2.0
Embodied Energy, MJ/kg 530
28
Embodied Water, L/kg 200
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
89
Resilience: Unit (Modulus of Resilience), kJ/m3 960
1910
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
33
Strength to Weight: Bending, points 31
27
Thermal Diffusivity, mm2/s 8.4
6.7
Thermal Shock Resistance, points 39
33

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0.2 to 0.4
Chromium (Cr), % 0.1 to 0.2
11.5 to 14
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
81.5 to 88.3
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0.35 to 0.55
0 to 1.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 98 to 99.52
0
Residuals, % 0 to 0.4
0