MakeItFrom.com
Menu (ESC)

Grade 34 Titanium vs. ACI-ASTM CB7Cu-1 Steel

Grade 34 titanium belongs to the titanium alloys classification, while ACI-ASTM CB7Cu-1 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 34 titanium and the bottom bar is ACI-ASTM CB7Cu-1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
5.7 to 11
Fatigue Strength, MPa 310
420 to 590
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 510
960 to 1350
Tensile Strength: Yield (Proof), MPa 450
760 to 1180

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Melting Completion (Liquidus), °C 1660
1430
Melting Onset (Solidus), °C 1610
1500
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
17
Thermal Expansion, µm/m-K 8.7
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 55
13
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 33
2.6
Embodied Energy, MJ/kg 530
38
Embodied Water, L/kg 200
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
71 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 960
1500 to 3590
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
34 to 48
Strength to Weight: Bending, points 31
28 to 35
Thermal Diffusivity, mm2/s 8.4
4.6
Thermal Shock Resistance, points 39
32 to 45

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.070
Chromium (Cr), % 0.1 to 0.2
15.5 to 17.7
Copper (Cu), % 0
2.5 to 3.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
72.3 to 78.4
Manganese (Mn), % 0
0 to 0.7
Nickel (Ni), % 0.35 to 0.55
3.6 to 4.6
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0 to 0.050
0 to 0.050
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.035
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98 to 99.52
0
Residuals, % 0 to 0.4
0