MakeItFrom.com
Menu (ESC)

Grade 34 Titanium vs. AISI 440C Stainless Steel

Grade 34 titanium belongs to the titanium alloys classification, while AISI 440C stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 34 titanium and the bottom bar is AISI 440C stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
2.0 to 14
Fatigue Strength, MPa 310
260 to 840
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 320
430 to 1120
Tensile Strength: Ultimate (UTS), MPa 510
710 to 1970
Tensile Strength: Yield (Proof), MPa 450
450 to 1900

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
870
Melting Completion (Liquidus), °C 1660
1480
Melting Onset (Solidus), °C 1610
1370
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
22
Thermal Expansion, µm/m-K 8.7
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.0
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 33
2.2
Embodied Energy, MJ/kg 530
31
Embodied Water, L/kg 200
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
39 to 88
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
26 to 71
Strength to Weight: Bending, points 31
23 to 46
Thermal Diffusivity, mm2/s 8.4
6.0
Thermal Shock Resistance, points 39
26 to 71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
1.0 to 1.2
Chromium (Cr), % 0.1 to 0.2
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
78 to 83.1
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0.35 to 0.55
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98 to 99.52
0
Residuals, % 0 to 0.4
0