MakeItFrom.com
Menu (ESC)

Grade 34 Titanium vs. ASTM A182 Grade F6b

Grade 34 titanium belongs to the titanium alloys classification, while ASTM A182 grade F6b belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 34 titanium and the bottom bar is ASTM A182 grade F6b.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
18
Fatigue Strength, MPa 310
440
Poisson's Ratio 0.32
0.28
Reduction in Area, % 34
51
Shear Modulus, GPa 41
76
Shear Strength, MPa 320
530
Tensile Strength: Ultimate (UTS), MPa 510
850
Tensile Strength: Yield (Proof), MPa 450
710

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
750
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 8.7
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 55
8.0
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 33
2.2
Embodied Energy, MJ/kg 530
30
Embodied Water, L/kg 200
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
140
Resilience: Unit (Modulus of Resilience), kJ/m3 960
1280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
30
Strength to Weight: Bending, points 31
26
Thermal Diffusivity, mm2/s 8.4
6.7
Thermal Shock Resistance, points 39
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0.1 to 0.2
11.5 to 13.5
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
81.2 to 87.1
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0.35 to 0.55
1.0 to 2.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.020
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 98 to 99.52
0
Residuals, % 0 to 0.4
0