MakeItFrom.com
Menu (ESC)

Grade 34 Titanium vs. C15500 Copper

Grade 34 titanium belongs to the titanium alloys classification, while C15500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 34 titanium and the bottom bar is C15500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 20
3.0 to 37
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
43
Shear Strength, MPa 320
190 to 320
Tensile Strength: Ultimate (UTS), MPa 510
280 to 550
Tensile Strength: Yield (Proof), MPa 450
130 to 530

Thermal Properties

Latent Heat of Fusion, J/g 420
210
Maximum Temperature: Mechanical, °C 320
200
Melting Completion (Liquidus), °C 1660
1080
Melting Onset (Solidus), °C 1610
1080
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 21
350
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
90
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
91

Otherwise Unclassified Properties

Base Metal Price, % relative 55
33
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 33
2.7
Embodied Energy, MJ/kg 530
42
Embodied Water, L/kg 200
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
15 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 960
72 to 1210
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 31
8.6 to 17
Strength to Weight: Bending, points 31
11 to 17
Thermal Diffusivity, mm2/s 8.4
100
Thermal Shock Resistance, points 39
9.8 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0.1 to 0.2
0
Copper (Cu), % 0
99.75 to 99.853
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0
Magnesium (Mg), % 0
0.080 to 0.13
Nickel (Ni), % 0.35 to 0.55
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0.040 to 0.080
Ruthenium (Ru), % 0.020 to 0.040
0
Silver (Ag), % 0
0.027 to 0.1
Titanium (Ti), % 98 to 99.52
0
Residuals, % 0 to 0.4
0 to 0.2