MakeItFrom.com
Menu (ESC)

Grade 34 Titanium vs. C17510 Copper

Grade 34 titanium belongs to the titanium alloys classification, while C17510 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 34 titanium and the bottom bar is C17510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 20
5.4 to 37
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
44
Shear Strength, MPa 320
210 to 500
Tensile Strength: Ultimate (UTS), MPa 510
310 to 860
Tensile Strength: Yield (Proof), MPa 450
120 to 750

Thermal Properties

Latent Heat of Fusion, J/g 420
220
Maximum Temperature: Mechanical, °C 320
220
Melting Completion (Liquidus), °C 1660
1070
Melting Onset (Solidus), °C 1610
1030
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 21
210
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
22 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
23 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 55
49
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 33
4.2
Embodied Energy, MJ/kg 530
65
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
39 to 92
Resilience: Unit (Modulus of Resilience), kJ/m3 960
64 to 2410
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 31
9.7 to 27
Strength to Weight: Bending, points 31
11 to 23
Thermal Diffusivity, mm2/s 8.4
60
Thermal Shock Resistance, points 39
11 to 30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.2 to 0.6
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0.1 to 0.2
0
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0
95.9 to 98.4
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.1
Nickel (Ni), % 0.35 to 0.55
1.4 to 2.2
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.010 to 0.020
0
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 0.2
Titanium (Ti), % 98 to 99.52
0
Residuals, % 0 to 0.4
0 to 0.5