MakeItFrom.com
Menu (ESC)

Grade 34 Titanium vs. C64700 Bronze

Grade 34 titanium belongs to the titanium alloys classification, while C64700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 34 titanium and the bottom bar is C64700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 20
9.0
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
44
Shear Strength, MPa 320
390
Tensile Strength: Ultimate (UTS), MPa 510
660
Tensile Strength: Yield (Proof), MPa 450
560

Thermal Properties

Latent Heat of Fusion, J/g 420
220
Maximum Temperature: Mechanical, °C 320
200
Melting Completion (Liquidus), °C 1660
1090
Melting Onset (Solidus), °C 1610
1030
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 21
210
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
38
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
38

Otherwise Unclassified Properties

Base Metal Price, % relative 55
31
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 33
2.7
Embodied Energy, MJ/kg 530
43
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
57
Resilience: Unit (Modulus of Resilience), kJ/m3 960
1370
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 31
21
Strength to Weight: Bending, points 31
19
Thermal Diffusivity, mm2/s 8.4
59
Thermal Shock Resistance, points 39
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0.1 to 0.2
0
Copper (Cu), % 0
95.8 to 98
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Nickel (Ni), % 0.35 to 0.55
1.6 to 2.2
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.010 to 0.020
0
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0.4 to 0.8
Titanium (Ti), % 98 to 99.52
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.4
0 to 0.5