MakeItFrom.com
Menu (ESC)

Grade 34 Titanium vs. S82013 Stainless Steel

Grade 34 titanium belongs to the titanium alloys classification, while S82013 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 34 titanium and the bottom bar is S82013 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
34
Fatigue Strength, MPa 310
400
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
78
Shear Strength, MPa 320
470
Tensile Strength: Ultimate (UTS), MPa 510
710
Tensile Strength: Yield (Proof), MPa 450
500

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
970
Melting Completion (Liquidus), °C 1660
1420
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 8.7
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 55
11
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 33
2.4
Embodied Energy, MJ/kg 530
34
Embodied Water, L/kg 200
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
220
Resilience: Unit (Modulus of Resilience), kJ/m3 960
640
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
26
Strength to Weight: Bending, points 31
23
Thermal Diffusivity, mm2/s 8.4
4.0
Thermal Shock Resistance, points 39
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0 to 0.060
Chromium (Cr), % 0.1 to 0.2
19.5 to 22
Copper (Cu), % 0
0.2 to 1.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
70.5 to 77.1
Manganese (Mn), % 0
2.5 to 3.5
Nickel (Ni), % 0.35 to 0.55
0.5 to 1.5
Nitrogen (N), % 0 to 0.050
0.2 to 0.3
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.010 to 0.020
0
Phosphorus (P), % 0
0 to 0.040
Ruthenium (Ru), % 0.020 to 0.040
0
Silicon (Si), % 0
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98 to 99.52
0
Residuals, % 0 to 0.4
0