MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. 6101B Aluminum

Grade 36 titanium belongs to the titanium alloys classification, while 6101B aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is 6101B aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 11
9.1 to 13
Fatigue Strength, MPa 300
62 to 70
Poisson's Ratio 0.36
0.33
Shear Modulus, GPa 39
26
Shear Strength, MPa 320
120 to 150
Tensile Strength: Ultimate (UTS), MPa 530
190 to 250
Tensile Strength: Yield (Proof), MPa 520
140 to 180

Thermal Properties

Latent Heat of Fusion, J/g 370
400
Maximum Temperature: Mechanical, °C 320
160
Melting Completion (Liquidus), °C 2020
640
Melting Onset (Solidus), °C 1950
630
Specific Heat Capacity, J/kg-K 420
900
Thermal Expansion, µm/m-K 8.1
23

Otherwise Unclassified Properties

Density, g/cm3 6.3
2.7
Embodied Carbon, kg CO2/kg material 58
8.3
Embodied Energy, MJ/kg 920
150
Embodied Water, L/kg 130
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
20 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
140 to 240
Stiffness to Weight: Axial, points 9.3
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 23
20 to 25
Strength to Weight: Bending, points 23
27 to 32
Thermal Shock Resistance, points 45
8.5 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
98.2 to 99.3
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
0 to 0.050
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
0.1 to 0.3
Magnesium (Mg), % 0
0.35 to 0.6
Manganese (Mn), % 0
0 to 0.050
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Silicon (Si), % 0
0.3 to 0.6
Titanium (Ti), % 52.3 to 58
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 0.4
0 to 0.1