MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. C46500 Brass

Grade 36 titanium belongs to the titanium alloys classification, while C46500 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is C46500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 11
18 to 50
Poisson's Ratio 0.36
0.31
Shear Modulus, GPa 39
40
Shear Strength, MPa 320
280 to 380
Tensile Strength: Ultimate (UTS), MPa 530
380 to 610
Tensile Strength: Yield (Proof), MPa 520
190 to 490

Thermal Properties

Latent Heat of Fusion, J/g 370
170
Maximum Temperature: Mechanical, °C 320
120
Melting Completion (Liquidus), °C 2020
900
Melting Onset (Solidus), °C 1950
890
Specific Heat Capacity, J/kg-K 420
380
Thermal Expansion, µm/m-K 8.1
21

Otherwise Unclassified Properties

Density, g/cm3 6.3
8.0
Embodied Carbon, kg CO2/kg material 58
2.7
Embodied Energy, MJ/kg 920
47
Embodied Water, L/kg 130
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
99 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
170 to 1170
Stiffness to Weight: Axial, points 9.3
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 23
13 to 21
Strength to Weight: Bending, points 23
15 to 20
Thermal Shock Resistance, points 45
13 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
59 to 62
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Tin (Sn), % 0
0.5 to 1.0
Titanium (Ti), % 52.3 to 58
0
Zinc (Zn), % 0
36.2 to 40.5
Residuals, % 0 to 0.4
0 to 0.4