MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. C84000 Brass

Grade 36 titanium belongs to the titanium alloys classification, while C84000 brass belongs to the copper alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
27
Poisson's Ratio 0.36
0.33
Shear Modulus, GPa 39
42
Tensile Strength: Ultimate (UTS), MPa 530
250
Tensile Strength: Yield (Proof), MPa 520
140

Thermal Properties

Latent Heat of Fusion, J/g 370
190
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 2020
1040
Melting Onset (Solidus), °C 1950
940
Specific Heat Capacity, J/kg-K 420
380
Thermal Expansion, µm/m-K 8.1
18

Otherwise Unclassified Properties

Density, g/cm3 6.3
8.6
Embodied Carbon, kg CO2/kg material 58
3.0
Embodied Energy, MJ/kg 920
49
Embodied Water, L/kg 130
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
58
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
83
Stiffness to Weight: Axial, points 9.3
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 23
8.2
Strength to Weight: Bending, points 23
10
Thermal Shock Resistance, points 45
9.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
82 to 89
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0
0 to 0.010
Nickel (Ni), % 0
0.5 to 2.0
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
2.0 to 4.0
Titanium (Ti), % 52.3 to 58
0
Zinc (Zn), % 0
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0 to 0.4
0 to 0.7