MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. C93600 Bronze

Grade 36 titanium belongs to the titanium alloys classification, while C93600 bronze belongs to the copper alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is C93600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
99
Elongation at Break, % 11
14
Poisson's Ratio 0.36
0.35
Shear Modulus, GPa 39
36
Tensile Strength: Ultimate (UTS), MPa 530
260
Tensile Strength: Yield (Proof), MPa 520
140

Thermal Properties

Latent Heat of Fusion, J/g 370
170
Maximum Temperature: Mechanical, °C 320
150
Melting Completion (Liquidus), °C 2020
940
Melting Onset (Solidus), °C 1950
840
Specific Heat Capacity, J/kg-K 420
350
Thermal Expansion, µm/m-K 8.1
19

Otherwise Unclassified Properties

Density, g/cm3 6.3
9.0
Embodied Carbon, kg CO2/kg material 58
3.2
Embodied Energy, MJ/kg 920
51
Embodied Water, L/kg 130
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
31
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
98
Stiffness to Weight: Axial, points 9.3
6.1
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 23
7.9
Strength to Weight: Bending, points 23
9.9
Thermal Shock Resistance, points 45
9.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.55
Carbon (C), % 0 to 0.030
0
Copper (Cu), % 0
79 to 83
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
0 to 0.2
Lead (Pb), % 0
11 to 13
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
6.0 to 8.0
Titanium (Ti), % 52.3 to 58
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0 to 0.4
0 to 0.7