MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. S21460 Stainless Steel

Grade 36 titanium belongs to the titanium alloys classification, while S21460 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is S21460 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
46
Fatigue Strength, MPa 300
390
Poisson's Ratio 0.36
0.28
Shear Modulus, GPa 39
77
Shear Strength, MPa 320
580
Tensile Strength: Ultimate (UTS), MPa 530
830
Tensile Strength: Yield (Proof), MPa 520
430

Thermal Properties

Latent Heat of Fusion, J/g 370
290
Maximum Temperature: Mechanical, °C 320
920
Melting Completion (Liquidus), °C 2020
1380
Melting Onset (Solidus), °C 1950
1330
Specific Heat Capacity, J/kg-K 420
480
Thermal Expansion, µm/m-K 8.1
18

Otherwise Unclassified Properties

Density, g/cm3 6.3
7.6
Embodied Carbon, kg CO2/kg material 58
3.0
Embodied Energy, MJ/kg 920
43
Embodied Water, L/kg 130
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
320
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
460
Stiffness to Weight: Axial, points 9.3
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
30
Strength to Weight: Bending, points 23
26
Thermal Shock Resistance, points 45
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.030
0 to 0.12
Chromium (Cr), % 0
17 to 19
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
57.3 to 63.7
Manganese (Mn), % 0
14 to 16
Nickel (Ni), % 0
5.0 to 6.0
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0.35 to 0.5
Oxygen (O), % 0 to 0.16
0
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 52.3 to 58
0
Residuals, % 0 to 0.4
0