MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. S40977 Stainless Steel

Grade 36 titanium belongs to the titanium alloys classification, while S40977 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is S40977 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
21
Fatigue Strength, MPa 300
200
Poisson's Ratio 0.36
0.28
Shear Modulus, GPa 39
76
Shear Strength, MPa 320
320
Tensile Strength: Ultimate (UTS), MPa 530
510
Tensile Strength: Yield (Proof), MPa 520
310

Thermal Properties

Latent Heat of Fusion, J/g 370
270
Maximum Temperature: Mechanical, °C 320
720
Melting Completion (Liquidus), °C 2020
1440
Melting Onset (Solidus), °C 1950
1400
Specific Heat Capacity, J/kg-K 420
480
Thermal Expansion, µm/m-K 8.1
10

Otherwise Unclassified Properties

Density, g/cm3 6.3
7.8
Embodied Carbon, kg CO2/kg material 58
1.9
Embodied Energy, MJ/kg 920
27
Embodied Water, L/kg 130
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
92
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
250
Stiffness to Weight: Axial, points 9.3
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
18
Strength to Weight: Bending, points 23
18
Thermal Shock Resistance, points 45
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 0
10.5 to 12.5
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
83.9 to 89.2
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
0.3 to 1.0
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0 to 0.030
Oxygen (O), % 0 to 0.16
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 52.3 to 58
0
Residuals, % 0 to 0.4
0