MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. 8090 Aluminum

Grade 37 titanium belongs to the titanium alloys classification, while 8090 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
67
Elongation at Break, % 22
3.5 to 13
Fatigue Strength, MPa 170
91 to 140
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
25
Tensile Strength: Ultimate (UTS), MPa 390
340 to 490
Tensile Strength: Yield (Proof), MPa 250
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 310
190
Melting Completion (Liquidus), °C 1650
660
Melting Onset (Solidus), °C 1600
600
Specific Heat Capacity, J/kg-K 550
960
Thermal Conductivity, W/m-K 21
95 to 160
Thermal Expansion, µm/m-K 8.9
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
20
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
66

Otherwise Unclassified Properties

Base Metal Price, % relative 36
18
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 31
8.6
Embodied Energy, MJ/kg 500
170
Embodied Water, L/kg 120
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 280
340 to 1330
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 24
34 to 49
Strength to Weight: Bending, points 26
39 to 50
Thermal Diffusivity, mm2/s 8.4
36 to 60
Thermal Shock Resistance, points 29
15 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 1.0 to 2.0
93 to 98.4
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
1.0 to 1.6
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.3
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 0
0.6 to 1.3
Manganese (Mn), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0
0 to 0.2
Titanium (Ti), % 96.9 to 99
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.16
Residuals, % 0 to 0.4
0 to 0.15