MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. AISI 405 Stainless Steel

Grade 37 titanium belongs to the titanium alloys classification, while AISI 405 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is AISI 405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 22
22
Fatigue Strength, MPa 170
130
Poisson's Ratio 0.32
0.28
Reduction in Area, % 34
51
Shear Modulus, GPa 40
76
Shear Strength, MPa 240
300
Tensile Strength: Ultimate (UTS), MPa 390
470
Tensile Strength: Yield (Proof), MPa 250
200

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 310
820
Melting Completion (Liquidus), °C 1650
1530
Melting Onset (Solidus), °C 1600
1480
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 21
30
Thermal Expansion, µm/m-K 8.9
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
7.0
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
2.0
Embodied Energy, MJ/kg 500
28
Embodied Water, L/kg 120
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
84
Resilience: Unit (Modulus of Resilience), kJ/m3 280
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
17
Strength to Weight: Bending, points 26
17
Thermal Diffusivity, mm2/s 8.4
8.1
Thermal Shock Resistance, points 29
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 1.0 to 2.0
0.1 to 0.3
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
11.5 to 14.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
82.5 to 88.4
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 96.9 to 99
0
Residuals, % 0 to 0.4
0