MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. AWS ER80S-B6

Grade 37 titanium belongs to the titanium alloys classification, while AWS ER80S-B6 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is AWS ER80S-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 22
19
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 390
620
Tensile Strength: Yield (Proof), MPa 250
540

Thermal Properties

Latent Heat of Fusion, J/g 420
260
Melting Completion (Liquidus), °C 1650
1460
Melting Onset (Solidus), °C 1600
1410
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 21
40
Thermal Expansion, µm/m-K 8.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
4.7
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
1.8
Embodied Energy, MJ/kg 500
24
Embodied Water, L/kg 120
71

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
110
Resilience: Unit (Modulus of Resilience), kJ/m3 280
750
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
22
Strength to Weight: Bending, points 26
21
Thermal Diffusivity, mm2/s 8.4
11
Thermal Shock Resistance, points 29
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 1.0 to 2.0
0
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 0
4.5 to 6.0
Copper (Cu), % 0
0 to 0.35
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
90.6 to 94.7
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.6
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 96.9 to 99
0
Residuals, % 0 to 0.4
0 to 0.5