MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. EN 1.4057 Stainless Steel

Grade 37 titanium belongs to the titanium alloys classification, while EN 1.4057 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is EN 1.4057 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22
11 to 17
Fatigue Strength, MPa 170
320 to 430
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 240
520 to 580
Tensile Strength: Ultimate (UTS), MPa 390
840 to 980
Tensile Strength: Yield (Proof), MPa 250
530 to 790

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 310
850
Melting Completion (Liquidus), °C 1650
1440
Melting Onset (Solidus), °C 1600
1390
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 8.9
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
2.2
Embodied Energy, MJ/kg 500
32
Embodied Water, L/kg 120
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
96 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 280
700 to 1610
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
30 to 35
Strength to Weight: Bending, points 26
26 to 28
Thermal Diffusivity, mm2/s 8.4
6.7
Thermal Shock Resistance, points 29
30 to 35

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 1.0 to 2.0
0
Carbon (C), % 0 to 0.080
0.12 to 0.22
Chromium (Cr), % 0
15 to 17
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
77.7 to 83.4
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
1.5 to 2.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 96.9 to 99
0
Residuals, % 0 to 0.4
0