MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. Grade CW6MC Nickel

Grade 37 titanium belongs to the titanium alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22
28
Fatigue Strength, MPa 170
210
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 390
540
Tensile Strength: Yield (Proof), MPa 250
310

Thermal Properties

Latent Heat of Fusion, J/g 420
330
Maximum Temperature: Mechanical, °C 310
980
Melting Completion (Liquidus), °C 1650
1480
Melting Onset (Solidus), °C 1600
1430
Specific Heat Capacity, J/kg-K 550
440
Thermal Conductivity, W/m-K 21
11
Thermal Expansion, µm/m-K 8.9
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
80
Density, g/cm3 4.5
8.6
Embodied Carbon, kg CO2/kg material 31
14
Embodied Energy, MJ/kg 500
200
Embodied Water, L/kg 120
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
130
Resilience: Unit (Modulus of Resilience), kJ/m3 280
240
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 26
17
Thermal Diffusivity, mm2/s 8.4
2.8
Thermal Shock Resistance, points 29
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 1.0 to 2.0
0
Carbon (C), % 0 to 0.080
0 to 0.060
Chromium (Cr), % 0
20 to 23
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 5.0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 96.9 to 99
0
Residuals, % 0 to 0.4
0