MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. C67300 Bronze

Grade 37 titanium belongs to the titanium alloys classification, while C67300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is C67300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 22
12
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
41
Shear Strength, MPa 240
300
Tensile Strength: Ultimate (UTS), MPa 390
500
Tensile Strength: Yield (Proof), MPa 250
340

Thermal Properties

Latent Heat of Fusion, J/g 420
190
Maximum Temperature: Mechanical, °C 310
130
Melting Completion (Liquidus), °C 1650
870
Melting Onset (Solidus), °C 1600
830
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 21
95
Thermal Expansion, µm/m-K 8.9
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
22
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
25

Otherwise Unclassified Properties

Base Metal Price, % relative 36
23
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 31
2.7
Embodied Energy, MJ/kg 500
46
Embodied Water, L/kg 120
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
55
Resilience: Unit (Modulus of Resilience), kJ/m3 280
550
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 24
17
Strength to Weight: Bending, points 26
17
Thermal Diffusivity, mm2/s 8.4
30
Thermal Shock Resistance, points 29
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 1.0 to 2.0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
58 to 63
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.5
Lead (Pb), % 0
0.4 to 3.0
Manganese (Mn), % 0
2.0 to 3.5
Nickel (Ni), % 0
0 to 0.25
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0
0.5 to 1.5
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 96.9 to 99
0
Zinc (Zn), % 0
27.2 to 39.1
Residuals, % 0 to 0.4
0 to 0.5