MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. C92300 Bronze

Grade 37 titanium belongs to the titanium alloys classification, while C92300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is C92300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 22
19
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 390
300
Tensile Strength: Yield (Proof), MPa 250
140

Thermal Properties

Latent Heat of Fusion, J/g 420
190
Maximum Temperature: Mechanical, °C 310
170
Melting Completion (Liquidus), °C 1650
1000
Melting Onset (Solidus), °C 1600
850
Specific Heat Capacity, J/kg-K 550
370
Thermal Conductivity, W/m-K 21
75
Thermal Expansion, µm/m-K 8.9
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
12
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
33
Density, g/cm3 4.5
8.7
Embodied Carbon, kg CO2/kg material 31
3.4
Embodied Energy, MJ/kg 500
56
Embodied Water, L/kg 120
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
47
Resilience: Unit (Modulus of Resilience), kJ/m3 280
86
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 24
9.5
Strength to Weight: Bending, points 26
11
Thermal Diffusivity, mm2/s 8.4
23
Thermal Shock Resistance, points 29
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 1.0 to 2.0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
85 to 89
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.25
Lead (Pb), % 0
0.3 to 1.0
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
7.5 to 9.0
Titanium (Ti), % 96.9 to 99
0
Zinc (Zn), % 0
2.5 to 5.0
Residuals, % 0 to 0.4
0 to 0.7