MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. N06200 Nickel

Grade 37 titanium belongs to the titanium alloys classification, while N06200 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is N06200 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 22
51
Fatigue Strength, MPa 170
290
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
84
Shear Strength, MPa 240
560
Tensile Strength: Ultimate (UTS), MPa 390
780
Tensile Strength: Yield (Proof), MPa 250
320

Thermal Properties

Latent Heat of Fusion, J/g 420
330
Maximum Temperature: Mechanical, °C 310
990
Melting Completion (Liquidus), °C 1650
1500
Melting Onset (Solidus), °C 1600
1450
Specific Heat Capacity, J/kg-K 550
430
Thermal Conductivity, W/m-K 21
9.1
Thermal Expansion, µm/m-K 8.9
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
65
Density, g/cm3 4.5
8.7
Embodied Carbon, kg CO2/kg material 31
12
Embodied Energy, MJ/kg 500
160
Embodied Water, L/kg 120
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
320
Resilience: Unit (Modulus of Resilience), kJ/m3 280
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 26
22
Thermal Diffusivity, mm2/s 8.4
2.4
Thermal Shock Resistance, points 29
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 1.0 to 2.0
0 to 0.5
Carbon (C), % 0 to 0.080
0 to 0.010
Chromium (Cr), % 0
22 to 24
Cobalt (Co), % 0
0 to 2.0
Copper (Cu), % 0
1.3 to 1.9
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 3.0
Manganese (Mn), % 0
0 to 0.010
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
51 to 61.7
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.080
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 96.9 to 99
0
Residuals, % 0 to 0.4
0