MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. N08366 Stainless Steel

Grade 37 titanium belongs to the titanium alloys classification, while N08366 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is N08366 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 22
34
Fatigue Strength, MPa 170
190
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
80
Shear Strength, MPa 240
390
Tensile Strength: Ultimate (UTS), MPa 390
590
Tensile Strength: Yield (Proof), MPa 250
240

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 1650
1460
Melting Onset (Solidus), °C 1600
1410
Specific Heat Capacity, J/kg-K 550
460
Thermal Conductivity, W/m-K 21
13
Thermal Expansion, µm/m-K 8.9
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
33
Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 31
6.2
Embodied Energy, MJ/kg 500
84
Embodied Water, L/kg 120
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
160
Resilience: Unit (Modulus of Resilience), kJ/m3 280
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 24
20
Strength to Weight: Bending, points 26
19
Thermal Diffusivity, mm2/s 8.4
3.4
Thermal Shock Resistance, points 29
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 1.0 to 2.0
0
Carbon (C), % 0 to 0.080
0 to 0.035
Chromium (Cr), % 0
20 to 22
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
42.4 to 50.5
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
23.5 to 25.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 96.9 to 99
0
Residuals, % 0 to 0.4
0