MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. ACI-ASTM CA15M Steel

Grade 38 titanium belongs to the titanium alloys classification, while ACI-ASTM CA15M steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is ACI-ASTM CA15M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
20
Fatigue Strength, MPa 530
330
Poisson's Ratio 0.32
0.28
Reduction in Area, % 29
34
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 1000
690
Tensile Strength: Yield (Proof), MPa 910
510

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 330
760
Melting Completion (Liquidus), °C 1620
1450
Melting Onset (Solidus), °C 1570
1410
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.0
27
Thermal Expansion, µm/m-K 9.3
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
7.5
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 35
2.1
Embodied Energy, MJ/kg 560
29
Embodied Water, L/kg 160
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
670
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62
25
Strength to Weight: Bending, points 49
22
Thermal Diffusivity, mm2/s 3.2
7.2
Thermal Shock Resistance, points 72
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.5 to 4.5
0
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
11.5 to 14
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
82.1 to 88.4
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.15 to 1.0
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.65
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0