MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. AISI 301L Stainless Steel

Grade 38 titanium belongs to the titanium alloys classification, while AISI 301L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is AISI 301L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
22 to 50
Fatigue Strength, MPa 530
240 to 530
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 600
440 to 660
Tensile Strength: Ultimate (UTS), MPa 1000
620 to 1040
Tensile Strength: Yield (Proof), MPa 910
250 to 790

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
890
Melting Completion (Liquidus), °C 1620
1430
Melting Onset (Solidus), °C 1570
1390
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.0
15
Thermal Expansion, µm/m-K 9.3
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 36
13
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 35
2.7
Embodied Energy, MJ/kg 560
39
Embodied Water, L/kg 160
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
160 to 1580
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62
22 to 37
Strength to Weight: Bending, points 49
21 to 29
Thermal Diffusivity, mm2/s 3.2
4.1
Thermal Shock Resistance, points 72
14 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.5 to 4.5
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
70.7 to 78
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0 to 0.030
0 to 0.2
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0