MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. AISI 302 Stainless Steel

Grade 38 titanium belongs to the titanium alloys classification, while AISI 302 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is AISI 302 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
4.5 to 46
Fatigue Strength, MPa 530
210 to 520
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 600
400 to 830
Tensile Strength: Ultimate (UTS), MPa 1000
580 to 1430
Tensile Strength: Yield (Proof), MPa 910
230 to 1100

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
710
Melting Completion (Liquidus), °C 1620
1420
Melting Onset (Solidus), °C 1570
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.0
16
Thermal Expansion, µm/m-K 9.3
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
15
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 35
3.0
Embodied Energy, MJ/kg 560
42
Embodied Water, L/kg 160
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
59 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
140 to 3070
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62
21 to 51
Strength to Weight: Bending, points 49
20 to 36
Thermal Diffusivity, mm2/s 3.2
4.4
Thermal Shock Resistance, points 72
12 to 31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.5 to 4.5
0
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
17 to 19
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
67.9 to 75
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Nitrogen (N), % 0 to 0.030
0 to 0.1
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0