MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. CC490K Brass

Grade 38 titanium belongs to the titanium alloys classification, while CC490K brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is CC490K brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
15
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 1000
230
Tensile Strength: Yield (Proof), MPa 910
110

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 330
160
Melting Completion (Liquidus), °C 1620
980
Melting Onset (Solidus), °C 1570
910
Specific Heat Capacity, J/kg-K 550
370
Thermal Conductivity, W/m-K 8.0
72
Thermal Expansion, µm/m-K 9.3
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
16

Otherwise Unclassified Properties

Base Metal Price, % relative 36
30
Density, g/cm3 4.5
8.8
Embodied Carbon, kg CO2/kg material 35
2.9
Embodied Energy, MJ/kg 560
47
Embodied Water, L/kg 160
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
28
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
54
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 62
7.3
Strength to Weight: Bending, points 49
9.5
Thermal Diffusivity, mm2/s 3.2
22
Thermal Shock Resistance, points 72
8.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.5 to 4.5
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
81 to 86
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
0 to 0.5
Lead (Pb), % 0
3.0 to 6.0
Nickel (Ni), % 0
0 to 2.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
2.0 to 3.5
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
7.0 to 9.5
Residuals, % 0 to 0.4
0