MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. CC763S Brass

Grade 38 titanium belongs to the titanium alloys classification, while CC763S brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is CC763S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
7.3
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 1000
490
Tensile Strength: Yield (Proof), MPa 910
270

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 330
140
Melting Completion (Liquidus), °C 1620
870
Melting Onset (Solidus), °C 1570
830
Specific Heat Capacity, J/kg-K 550
400
Thermal Expansion, µm/m-K 9.3
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
32

Otherwise Unclassified Properties

Base Metal Price, % relative 36
24
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 35
2.9
Embodied Energy, MJ/kg 560
49
Embodied Water, L/kg 160
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
30
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
340
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 62
17
Strength to Weight: Bending, points 49
17
Thermal Shock Resistance, points 72
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.5 to 4.5
1.0 to 2.5
Antimony (Sb), % 0
0 to 0.080
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
56.5 to 67
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
0.5 to 2.0
Lead (Pb), % 0
0 to 1.5
Manganese (Mn), % 0
1.0 to 3.5
Nickel (Ni), % 0
0 to 2.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Silicon (Si), % 0
0 to 1.0
Tin (Sn), % 0
0 to 1.0
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
18.9 to 41
Residuals, % 0 to 0.4
0