MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. Grade CW6M Nickel

Grade 38 titanium belongs to the titanium alloys classification, while grade CW6M nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is grade CW6M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 11
29
Fatigue Strength, MPa 530
210
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
84
Tensile Strength: Ultimate (UTS), MPa 1000
560
Tensile Strength: Yield (Proof), MPa 910
310

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 330
970
Melting Completion (Liquidus), °C 1620
1530
Melting Onset (Solidus), °C 1570
1470
Specific Heat Capacity, J/kg-K 550
430
Thermal Expansion, µm/m-K 9.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
65
Density, g/cm3 4.5
8.8
Embodied Carbon, kg CO2/kg material 35
13
Embodied Energy, MJ/kg 560
170
Embodied Water, L/kg 160
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 62
18
Strength to Weight: Bending, points 49
17
Thermal Shock Resistance, points 72
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.5 to 4.5
0
Carbon (C), % 0 to 0.080
0 to 0.070
Chromium (Cr), % 0
17 to 20
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
0 to 3.0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
17 to 20
Nickel (Ni), % 0
54.9 to 66
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0