MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. C50100 Bronze

Grade 38 titanium belongs to the titanium alloys classification, while C50100 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is C50100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11
40
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Shear Strength, MPa 600
180
Tensile Strength: Ultimate (UTS), MPa 1000
270
Tensile Strength: Yield (Proof), MPa 910
82

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 330
200
Melting Completion (Liquidus), °C 1620
1080
Melting Onset (Solidus), °C 1570
1070
Specific Heat Capacity, J/kg-K 550
380
Thermal Conductivity, W/m-K 8.0
230
Thermal Expansion, µm/m-K 9.3
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
55
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
55

Otherwise Unclassified Properties

Base Metal Price, % relative 36
31
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 35
2.6
Embodied Energy, MJ/kg 560
42
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
82
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
29
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 62
8.3
Strength to Weight: Bending, points 49
10
Thermal Diffusivity, mm2/s 3.2
66
Thermal Shock Resistance, points 72
9.5

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.5 to 4.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
98.6 to 99.49
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0.010 to 0.050
Tin (Sn), % 0
0.5 to 0.8
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0 to 0.5