MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. C53800 Bronze

Grade 38 titanium belongs to the titanium alloys classification, while C53800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is C53800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
2.3
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
40
Shear Strength, MPa 600
470
Tensile Strength: Ultimate (UTS), MPa 1000
830
Tensile Strength: Yield (Proof), MPa 910
660

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 330
160
Melting Completion (Liquidus), °C 1620
980
Melting Onset (Solidus), °C 1570
800
Specific Heat Capacity, J/kg-K 550
360
Thermal Conductivity, W/m-K 8.0
61
Thermal Expansion, µm/m-K 9.3
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
37
Density, g/cm3 4.5
8.7
Embodied Carbon, kg CO2/kg material 35
3.9
Embodied Energy, MJ/kg 560
64
Embodied Water, L/kg 160
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
18
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
2020
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 62
26
Strength to Weight: Bending, points 49
22
Thermal Diffusivity, mm2/s 3.2
19
Thermal Shock Resistance, points 72
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.5 to 4.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
85.1 to 86.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
0 to 0.030
Lead (Pb), % 0
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.060
Nickel (Ni), % 0
0 to 0.030
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Tin (Sn), % 0
13.1 to 13.9
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.12
Residuals, % 0 to 0.4
0 to 0.2