MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. C86100 Bronze

Grade 38 titanium belongs to the titanium alloys classification, while C86100 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is C86100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
20
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 1000
660
Tensile Strength: Yield (Proof), MPa 910
350

Thermal Properties

Latent Heat of Fusion, J/g 410
200
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1620
940
Melting Onset (Solidus), °C 1570
900
Specific Heat Capacity, J/kg-K 550
420
Thermal Conductivity, W/m-K 8.0
35
Thermal Expansion, µm/m-K 9.3
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
24
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 35
2.9
Embodied Energy, MJ/kg 560
49
Embodied Water, L/kg 160
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
530
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 62
23
Strength to Weight: Bending, points 49
21
Thermal Diffusivity, mm2/s 3.2
10
Thermal Shock Resistance, points 72
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.5 to 4.5
4.5 to 5.5
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
66 to 68
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
2.0 to 4.0
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0
2.5 to 5.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
17.3 to 25
Residuals, % 0 to 0.4
0