MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. N06045 Nickel

Grade 38 titanium belongs to the titanium alloys classification, while N06045 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is N06045 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
37
Fatigue Strength, MPa 530
210
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 600
470
Tensile Strength: Ultimate (UTS), MPa 1000
690
Tensile Strength: Yield (Proof), MPa 910
270

Thermal Properties

Latent Heat of Fusion, J/g 410
350
Maximum Temperature: Mechanical, °C 330
1010
Melting Completion (Liquidus), °C 1620
1350
Melting Onset (Solidus), °C 1570
1300
Specific Heat Capacity, J/kg-K 550
480
Thermal Expansion, µm/m-K 9.3
13

Otherwise Unclassified Properties

Base Metal Price, % relative 36
42
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 35
6.9
Embodied Energy, MJ/kg 560
98
Embodied Water, L/kg 160
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
200
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62
24
Strength to Weight: Bending, points 49
22
Thermal Shock Resistance, points 72
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.5 to 4.5
0
Carbon (C), % 0 to 0.080
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.090
Chromium (Cr), % 0
26 to 29
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
21 to 25
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
45 to 50.4
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
2.5 to 3.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0