MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. N10624 Nickel

Grade 38 titanium belongs to the titanium alloys classification, while N10624 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is N10624 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 11
45
Fatigue Strength, MPa 530
310
Poisson's Ratio 0.32
0.3
Shear Modulus, GPa 40
84
Shear Strength, MPa 600
570
Tensile Strength: Ultimate (UTS), MPa 1000
810
Tensile Strength: Yield (Proof), MPa 910
360

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 330
930
Melting Completion (Liquidus), °C 1620
1580
Melting Onset (Solidus), °C 1570
1520
Specific Heat Capacity, J/kg-K 550
410
Thermal Expansion, µm/m-K 9.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 36
70
Density, g/cm3 4.5
9.0
Embodied Carbon, kg CO2/kg material 35
13
Embodied Energy, MJ/kg 560
170
Embodied Water, L/kg 160
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
300
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 62
25
Strength to Weight: Bending, points 49
22
Thermal Shock Resistance, points 72
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.5 to 4.5
0 to 0.5
Carbon (C), % 0 to 0.080
0 to 0.010
Chromium (Cr), % 0
6.0 to 10
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
5.0 to 8.0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
21 to 25
Nickel (Ni), % 0
53.9 to 68
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0