MakeItFrom.com
Menu (ESC)

Grade 4 Titanium vs. C19100 Copper

Grade 4 titanium belongs to the titanium alloys classification, while C19100 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 4 titanium and the bottom bar is C19100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 17
17 to 37
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
43
Shear Strength, MPa 390
170 to 330
Tensile Strength: Ultimate (UTS), MPa 640
250 to 630
Tensile Strength: Yield (Proof), MPa 530
75 to 550

Thermal Properties

Latent Heat of Fusion, J/g 420
210
Maximum Temperature: Mechanical, °C 320
200
Melting Completion (Liquidus), °C 1660
1080
Melting Onset (Solidus), °C 1610
1040
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 19
250
Thermal Expansion, µm/m-K 9.4
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
55
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
56

Otherwise Unclassified Properties

Base Metal Price, % relative 37
33
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 31
2.7
Embodied Energy, MJ/kg 500
43
Embodied Water, L/kg 110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
60 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 1330
24 to 1310
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 40
7.7 to 20
Strength to Weight: Bending, points 37
9.9 to 18
Thermal Diffusivity, mm2/s 7.6
73
Thermal Shock Resistance, points 46
8.9 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
96.5 to 98.6
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 0.2
Lead (Pb), % 0
0 to 0.1
Nickel (Ni), % 0
0.9 to 1.3
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0.15 to 0.35
Tellurium (Te), % 0
0.35 to 0.6
Titanium (Ti), % 98.6 to 100
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.4
0 to 0.5