MakeItFrom.com
Menu (ESC)

Grade 4 Titanium vs. C35300 Brass

Grade 4 titanium belongs to the titanium alloys classification, while C35300 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is grade 4 titanium and the bottom bar is C35300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 41
39
Tensile Strength: Ultimate (UTS), MPa 640
340 to 650

Thermal Properties

Latent Heat of Fusion, J/g 420
170
Maximum Temperature: Mechanical, °C 320
120
Melting Completion (Liquidus), °C 1660
910
Melting Onset (Solidus), °C 1610
890
Specific Heat Capacity, J/kg-K 540
380
Thermal Conductivity, W/m-K 19
120
Thermal Expansion, µm/m-K 9.4
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
26
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
29

Otherwise Unclassified Properties

Base Metal Price, % relative 37
23
Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 31
2.6
Embodied Energy, MJ/kg 500
45
Embodied Water, L/kg 110
320

Common Calculations

Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 40
12 to 22
Strength to Weight: Bending, points 37
13 to 21
Thermal Diffusivity, mm2/s 7.6
38
Thermal Shock Resistance, points 46
11 to 22

Alloy Composition

Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
60 to 63
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0
1.5 to 2.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Titanium (Ti), % 98.6 to 100
0
Zinc (Zn), % 0
33.9 to 38.5
Residuals, % 0
0 to 0.5