MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. 5059 Aluminum

Grade 5 titanium belongs to the titanium alloys classification, while 5059 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is 5059 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 8.6 to 11
11 to 25
Fatigue Strength, MPa 530 to 630
170 to 240
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 600 to 710
220 to 250
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
350 to 410
Tensile Strength: Yield (Proof), MPa 910 to 1110
170 to 300

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 330
210
Melting Completion (Liquidus), °C 1610
650
Melting Onset (Solidus), °C 1650
510
Specific Heat Capacity, J/kg-K 560
900
Thermal Conductivity, W/m-K 6.8
110
Thermal Expansion, µm/m-K 8.9
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
95

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.4
2.7
Embodied Carbon, kg CO2/kg material 38
9.1
Embodied Energy, MJ/kg 610
160
Embodied Water, L/kg 200
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
220 to 650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 62 to 75
36 to 42
Strength to Weight: Bending, points 50 to 56
41 to 45
Thermal Diffusivity, mm2/s 2.7
44
Thermal Shock Resistance, points 76 to 91
16 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
89.9 to 94
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.5
Magnesium (Mg), % 0
5.0 to 6.0
Manganese (Mn), % 0
0.6 to 1.2
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.45
Titanium (Ti), % 87.4 to 91
0 to 0.2
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Zinc (Zn), % 0
0.4 to 0.9
Zirconium (Zr), % 0
0.050 to 0.25
Residuals, % 0 to 0.4
0 to 0.15

Comparable Variants