MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. 712.0 Aluminum

Grade 5 titanium belongs to the titanium alloys classification, while 712.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is 712.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 8.6 to 11
4.5 to 4.7
Fatigue Strength, MPa 530 to 630
140 to 180
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 40
27
Shear Strength, MPa 600 to 710
180
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
250 to 260
Tensile Strength: Yield (Proof), MPa 910 to 1110
180 to 200

Thermal Properties

Latent Heat of Fusion, J/g 410
380
Maximum Temperature: Mechanical, °C 330
190
Melting Completion (Liquidus), °C 1610
640
Melting Onset (Solidus), °C 1650
610
Specific Heat Capacity, J/kg-K 560
870
Thermal Conductivity, W/m-K 6.8
160
Thermal Expansion, µm/m-K 8.9
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
120

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.4
3.0
Embodied Carbon, kg CO2/kg material 38
8.0
Embodied Energy, MJ/kg 610
150
Embodied Water, L/kg 200
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
11
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
240 to 270
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
46
Strength to Weight: Axial, points 62 to 75
24 to 25
Strength to Weight: Bending, points 50 to 56
30 to 31
Thermal Diffusivity, mm2/s 2.7
62
Thermal Shock Resistance, points 76 to 91
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
90.7 to 94
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.5
Magnesium (Mg), % 0
0.5 to 0.65
Manganese (Mn), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.3
Titanium (Ti), % 87.4 to 91
0.15 to 0.25
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Zinc (Zn), % 0
5.0 to 6.5
Residuals, % 0 to 0.4
0 to 0.2