MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. AWS E70C-B2L

Grade 5 titanium belongs to the titanium alloys classification, while AWS E70C-B2L belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is AWS E70C-B2L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.6 to 11
21
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
580
Tensile Strength: Yield (Proof), MPa 910 to 1110
460

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1650
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 6.8
39
Thermal Expansion, µm/m-K 8.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
3.0
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
1.6
Embodied Energy, MJ/kg 610
22
Embodied Water, L/kg 200
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
550
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62 to 75
20
Strength to Weight: Bending, points 50 to 56
20
Thermal Diffusivity, mm2/s 2.7
11
Thermal Shock Resistance, points 76 to 91
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
1.0 to 1.5
Copper (Cu), % 0
0 to 0.35
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
95.1 to 98
Manganese (Mn), % 0
0.4 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.65
Nickel (Ni), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.25 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0 to 0.030
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0 to 0.5