MakeItFrom.com
Menu (ESC)

Grade 5 Titanium vs. EN 1.4806 Stainless Steel

Grade 5 titanium belongs to the titanium alloys classification, while EN 1.4806 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 5 titanium and the bottom bar is EN 1.4806 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.6 to 11
6.8
Fatigue Strength, MPa 530 to 630
120
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 1000 to 1190
470
Tensile Strength: Yield (Proof), MPa 910 to 1110
250

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 330
1000
Melting Completion (Liquidus), °C 1610
1380
Melting Onset (Solidus), °C 1650
1340
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 6.8
12
Thermal Expansion, µm/m-K 8.9
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
31
Density, g/cm3 4.4
8.0
Embodied Carbon, kg CO2/kg material 38
5.4
Embodied Energy, MJ/kg 610
76
Embodied Water, L/kg 200
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 110
27
Resilience: Unit (Modulus of Resilience), kJ/m3 3980 to 5880
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62 to 75
16
Strength to Weight: Bending, points 50 to 56
17
Thermal Diffusivity, mm2/s 2.7
3.1
Thermal Shock Resistance, points 76 to 91
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0.3 to 0.5
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
40.4 to 48.7
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
34 to 36
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.4 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Yttrium (Y), % 0 to 0.0050
0
Residuals, % 0 to 0.4
0